# KineTrax

#### Team KineJax

Anthony Black, Jack Jenkins, Cherie Parsons, Grant Swanson, Christopher Whitney

Client/Mentor: Dr. Kyle Winfree

### Domain Introduction













# Limitations of Current Technologies

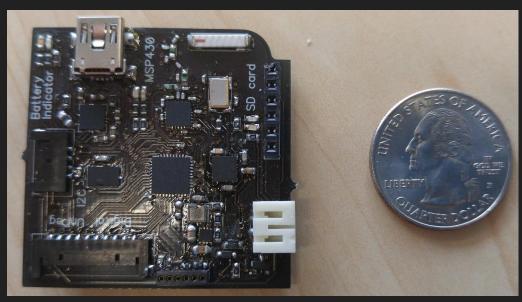
Domain Problem - Current wearable devices:

- Unable to interface with other devices
- No synchronization across a distributed network
- Doesn't yield the resolution of measurements as other capturing systems

#### **Project Specific Problem:**

• There is no software framework for the device

|                         | Fitbit     | ActiGraph    | Vicon        |  |  |  |
|-------------------------|------------|--------------|--------------|--|--|--|
| Interface w/<br>devices | $\bigcirc$ | $\checkmark$ | <b>~</b>     |  |  |  |
| Sync                    | $\bigcirc$ |              | $\checkmark$ |  |  |  |
| Resolution              | 1 min      | 30-100 Hz    | 100+ Hz      |  |  |  |
| Cost                    | Low        | Expensive    | Expensive    |  |  |  |


#### **Problem Statement**

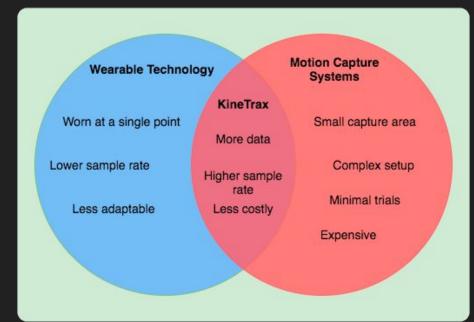
Current wearable devices are unable to interface with other device and are unable to give the necessary resolution for gait analysis in a community setting.

# **Project Introduction**

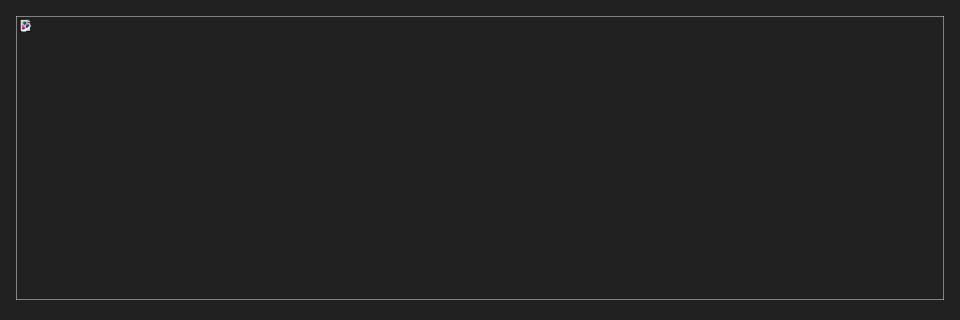
KineTrax Device:

- Wearable device
- Records full body kinematics
  - Position and rotation of limbs
- Gait analysis
  - Movement impairments
  - Physical impairments
  - Prosthetic limbs
  - Sports medicine




# Solution Overview

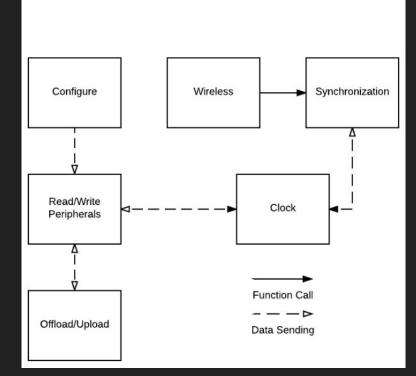
What the KineTrax offers:


- Digital I/O ports
- Analog I/O ports
- I2C bus, allowing 127 sensors/peripherals

Create software that allows:

- Time synchronization between devices (Embedded)
- Recording of timestamped accelerometer/gyroscope data to SD card (Embedded)
- Data offloading from SD cards (Embedded/PC)
- Device configuration via processing language (PC)

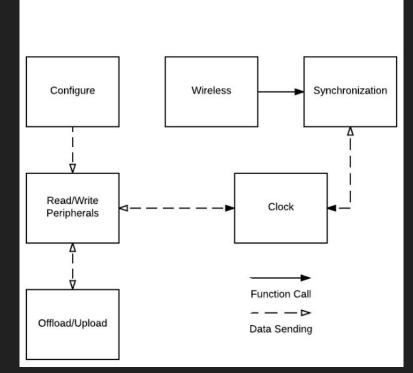



### Implementation Overview



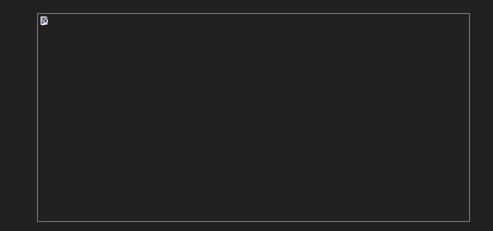
# Architectural Overview(Embedded)

- Peripherals
  - Peripherals accessed through Inter-Integrated Circuit (I2C) and Universal Asynchronous Receiver/Transmitter (UART)
  - Key functions:
    - read()
    - write()
- Wireless Communication
  - Communication with other devices via 2.4 GHz
    Radio Frequency
  - Utilizes SimpliciTI Protocol
  - Key functions:
    - connect()
    - getMessage()
    - sendMessage()
- Synchronization
  - Calculates offset between time from Real Time Clock and time received from wireless messages.


#### KineTrax Architecture



# Architectural Overview(Embedded) (cont.)


- Real-time Clock
  - Responsible for getting and setting time
  - Communicates via I2C and UART
- Configuration
  - Sets peripheral addresses
  - Sets peripheral sample rates
  - Information assigned to variables for use
- Offload/Upload
  - Write configuration data to SD card from offload software
  - Send data from SD card to offload software
  - SD card accessed via OpenLog protocol
  - Serial communication used for offload software
  - Key functions:
    - checkForConnection()
    - sendInfo()
    - getInfo()

#### KineTrax Architecture

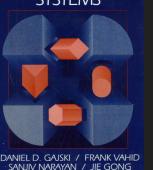


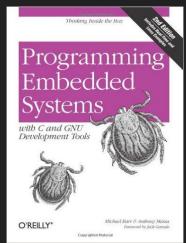
# Architectural Overview(PC)

- Offload Data from Device
  - Reading data from device
  - Raw data to CSV
- Configuration
  - Loading from configuration file
  - Saving to configuration file
  - Setting configuration on device



# **Challenges and Resolutions**


#### Big Challenges:


- Code Composer Studio(IDE)
  - Debugging
    - Print statements
    - Break points
  - Understanding the stages in the build process
- Embedded Systems
  - Learning curve for embedded systems
  - Acronyms (RTC,I2C,SPI,etc.)
- Existing Code has minimal documentation

#### Resolution:

- Research
  - Existing Documentation/Sample Code
  - Texas Instruments forums
  - Embedded System Books







### Schedule

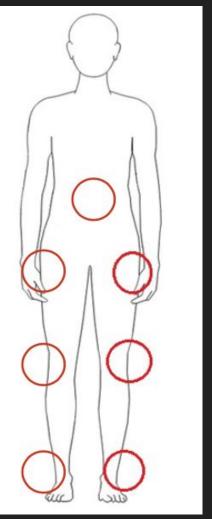
| Legend      |  |
|-------------|--|
| Completed   |  |
| In-progress |  |
| Not started |  |

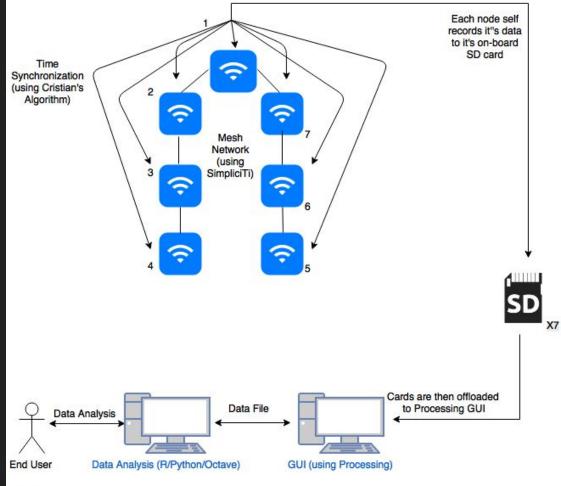
| Task/Week                   | 1 | 2 | 3 | 4 | 5   | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-----------------------------|---|---|---|---|-----|---|---|---|---|----|----|----|----|----|----|----|
| 1. Embedded                 |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Get time from RTC           |   |   |   |   |     | - | _ |   |   |    |    |    |    |    |    |    |
| Set time of RTC             |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Write to SD                 |   |   |   |   | - 3 |   |   |   |   |    |    |    |    |    |    |    |
| Read from SD                |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Sample sensors              |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Wirelessly send messages    |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Wirelessly recieve messages |   |   |   |   |     |   |   | _ |   | -  |    |    |    |    |    |    |
| Time-synchronization        |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Distance estimation         |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Configuration functionality |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| 2. GUI                      |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Save data to CSV            |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Save configurations file    |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Load configuration file     |   |   |   |   |     |   |   |   |   |    | _  |    |    |    |    |    |
| Communication w/ device     |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Add peripheral              |   |   |   |   |     |   |   |   |   |    | 1  |    |    |    |    |    |
| 3. Testing                  |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |
| Vicon testing               |   |   |   |   |     |   |   |   |   |    |    |    |    |    |    |    |

#### (Spring break not included)

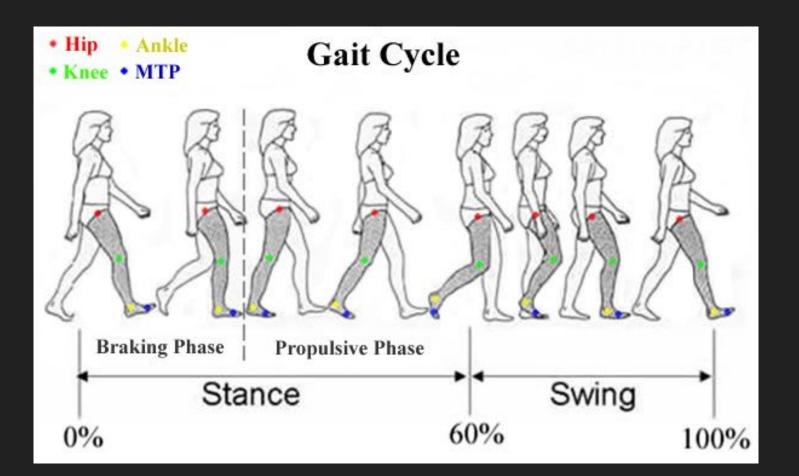
## Conclusion

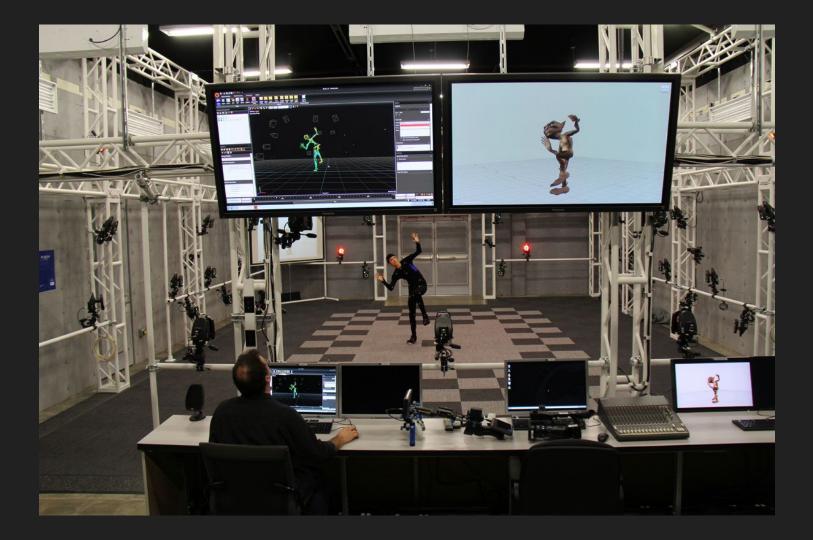
KineTrax has the potential to benefit lots of areas:

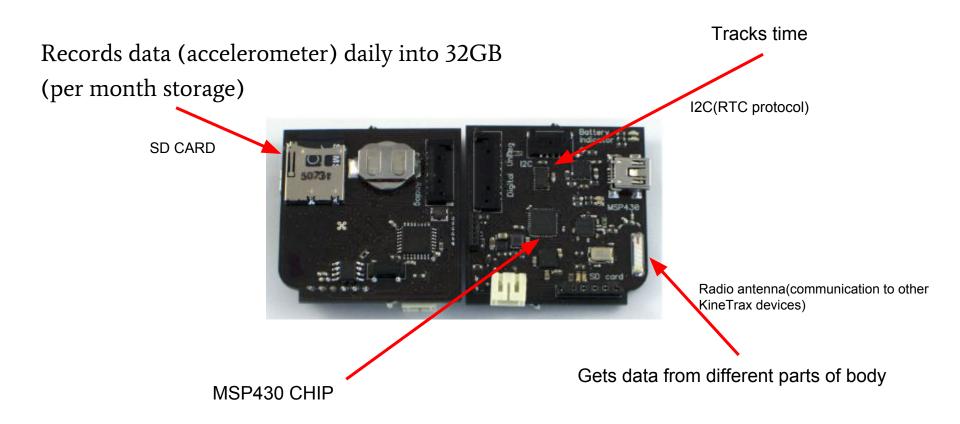

- Movement impairments
- Prosthetic limbs
- Sports medicine
- Farm animals


Lots of progress has been made:

- Device can sample sensors
- Device can get time from RTC
- Device can wirelessly communicate
- GUI reads raw serial data to CSV
- GUI loads configuration file
- GUI can save configuration file


### References


- 1. http://evenamed.com/eyes-on-glasses/
- 2. http://www.fabricatingandmetalworking.com/2015/02/waterjet-used-make-prosthetic-limb/Winfree
- 3. http://www.pcclassesonline.com/fitbit-charge-hr-vs-surge-review-and-tutorial/
- 4. <u>http://www.operationward57.org/2011/03/new-bionic-prosthetic-for-lower-leg-amputees/</u>
- 5. <u>http://toughasia.com/blog/wearable-tech-vylyv-labs-smart-shorts-enable-men-to-strengthen-pelvic-fl</u> <u>oor-muscles/</u>
- 6. <u>https://www.amazon.com/Programming-Embedded-Systems-Development-Tools/dp/0596009836</u>
- 7. <u>https://www.pearsonhighered.com/program/Gajski-Specification-and-Design-of-Embedded-Systems/</u> PGM30685.html
- 8. http://www.quintic.com/education/case\_studies/Gait%20Analysis.html






Text





